home *** CD-ROM | disk | FTP | other *** search
/ Amiga Tools 4 / Amiga Tools 4.iso / grafix / tools / jpeg / jpeg-6a / jcdctmgr.c < prev    next >
C/C++ Source or Header  |  1996-01-13  |  12KB  |  388 lines

  1. /*
  2.  * jcdctmgr.c
  3.  *
  4.  * Copyright (C) 1994-1996, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains the forward-DCT management logic.
  9.  * This code selects a particular DCT implementation to be used,
  10.  * and it performs related housekeeping chores including coefficient
  11.  * quantization.
  12.  */
  13.  
  14. #define JPEG_INTERNALS
  15. #include "jinclude.h"
  16. #include "jpeglib.h"
  17. #include "jdct.h"        /* Private declarations for DCT subsystem */
  18.  
  19.  
  20. /* Private subobject for this module */
  21.  
  22. typedef struct {
  23.   struct jpeg_forward_dct pub;    /* public fields */
  24.  
  25.   /* Pointer to the DCT routine actually in use */
  26.   forward_DCT_method_ptr do_dct;
  27.  
  28.   /* The actual post-DCT divisors --- not identical to the quant table
  29.    * entries, because of scaling (especially for an unnormalized DCT).
  30.    * Each table is given in normal array order.
  31.    */
  32.   DCTELEM * divisors[NUM_QUANT_TBLS];
  33.  
  34. #ifdef DCT_FLOAT_SUPPORTED
  35.   /* Same as above for the floating-point case. */
  36.   float_DCT_method_ptr do_float_dct;
  37.   FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
  38. #endif
  39. } my_fdct_controller;
  40.  
  41. typedef my_fdct_controller * my_fdct_ptr;
  42.  
  43.  
  44. /*
  45.  * Initialize for a processing pass.
  46.  * Verify that all referenced Q-tables are present, and set up
  47.  * the divisor table for each one.
  48.  * In the current implementation, DCT of all components is done during
  49.  * the first pass, even if only some components will be output in the
  50.  * first scan.  Hence all components should be examined here.
  51.  */
  52.  
  53. METHODDEF(void)
  54. start_pass_fdctmgr (j_compress_ptr cinfo)
  55. {
  56.   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
  57.   int ci, qtblno, i;
  58.   jpeg_component_info *compptr;
  59.   JQUANT_TBL * qtbl;
  60.   DCTELEM * dtbl;
  61.  
  62.   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  63.        ci++, compptr++) {
  64.     qtblno = compptr->quant_tbl_no;
  65.     /* Make sure specified quantization table is present */
  66.     if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
  67.     cinfo->quant_tbl_ptrs[qtblno] == NULL)
  68.       ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
  69.     qtbl = cinfo->quant_tbl_ptrs[qtblno];
  70.     /* Compute divisors for this quant table */
  71.     /* We may do this more than once for same table, but it's not a big deal */
  72.     switch (cinfo->dct_method) {
  73. #ifdef DCT_ISLOW_SUPPORTED
  74.     case JDCT_ISLOW:
  75.       /* For LL&M IDCT method, divisors are equal to raw quantization
  76.        * coefficients multiplied by 8 (to counteract scaling).
  77.        */
  78.       if (fdct->divisors[qtblno] == NULL) {
  79.     fdct->divisors[qtblno] = (DCTELEM *)
  80.       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  81.                       DCTSIZE2 * SIZEOF(DCTELEM));
  82.       }
  83.       dtbl = fdct->divisors[qtblno];
  84.       for (i = 0; i < DCTSIZE2; i++) {
  85.     dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
  86.       }
  87.       break;
  88. #endif
  89. #ifdef DCT_IFAST_SUPPORTED
  90.     case JDCT_IFAST:
  91.       {
  92.     /* For AA&N IDCT method, divisors are equal to quantization
  93.      * coefficients scaled by scalefactor[row]*scalefactor[col], where
  94.      *   scalefactor[0] = 1
  95.      *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
  96.      * We apply a further scale factor of 8.
  97.      */
  98. #define CONST_BITS 14
  99.     static const INT16 aanscales[DCTSIZE2] = {
  100.       /* precomputed values scaled up by 14 bits */
  101.       16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
  102.       22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
  103.       21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
  104.       19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
  105.       16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
  106.       12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
  107.        8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
  108.        4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
  109.     };
  110.     SHIFT_TEMPS
  111.  
  112.     if (fdct->divisors[qtblno] == NULL) {
  113.       fdct->divisors[qtblno] = (DCTELEM *)
  114.         (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  115.                     DCTSIZE2 * SIZEOF(DCTELEM));
  116.     }
  117.     dtbl = fdct->divisors[qtblno];
  118.     for (i = 0; i < DCTSIZE2; i++) {
  119.       dtbl[i] = (DCTELEM)
  120.         DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
  121.                   (INT32) aanscales[i]),
  122.             CONST_BITS-3);
  123.     }
  124.       }
  125.       break;
  126. #endif
  127. #ifdef DCT_FLOAT_SUPPORTED
  128.     case JDCT_FLOAT:
  129.       {
  130.     /* For float AA&N IDCT method, divisors are equal to quantization
  131.      * coefficients scaled by scalefactor[row]*scalefactor[col], where
  132.      *   scalefactor[0] = 1
  133.      *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
  134.      * We apply a further scale factor of 8.
  135.      * What's actually stored is 1/divisor so that the inner loop can
  136.      * use a multiplication rather than a division.
  137.      */
  138.     FAST_FLOAT * fdtbl;
  139.     int row, col;
  140.     static const double aanscalefactor[DCTSIZE] = {
  141.       1.0, 1.387039845, 1.306562965, 1.175875602,
  142.       1.0, 0.785694958, 0.541196100, 0.275899379
  143.     };
  144.  
  145.     if (fdct->float_divisors[qtblno] == NULL) {
  146.       fdct->float_divisors[qtblno] = (FAST_FLOAT *)
  147.         (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  148.                     DCTSIZE2 * SIZEOF(FAST_FLOAT));
  149.     }
  150.     fdtbl = fdct->float_divisors[qtblno];
  151.     i = 0;
  152.     for (row = 0; row < DCTSIZE; row++) {
  153.       for (col = 0; col < DCTSIZE; col++) {
  154.         fdtbl[i] = (FAST_FLOAT)
  155.           (1.0 / (((double) qtbl->quantval[i] *
  156.                aanscalefactor[row] * aanscalefactor[col] * 8.0)));
  157.         i++;
  158.       }
  159.     }
  160.       }
  161.       break;
  162. #endif
  163.     default:
  164.       ERREXIT(cinfo, JERR_NOT_COMPILED);
  165.       break;
  166.     }
  167.   }
  168. }
  169.  
  170.  
  171. /*
  172.  * Perform forward DCT on one or more blocks of a component.
  173.  *
  174.  * The input samples are taken from the sample_data[] array starting at
  175.  * position start_row/start_col, and moving to the right for any additional
  176.  * blocks. The quantized coefficients are returned in coef_blocks[].
  177.  */
  178.  
  179. METHODDEF(void)
  180. forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
  181.          JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
  182.          JDIMENSION start_row, JDIMENSION start_col,
  183.          JDIMENSION num_blocks)
  184. /* This version is used for integer DCT implementations. */
  185. {
  186.   /* This routine is heavily used, so it's worth coding it tightly. */
  187.   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
  188.   forward_DCT_method_ptr do_dct = fdct->do_dct;
  189.   DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
  190.   DCTELEM workspace[DCTSIZE2];    /* work area for FDCT subroutine */
  191.   JDIMENSION bi;
  192.  
  193.   sample_data += start_row;    /* fold in the vertical offset once */
  194.  
  195.   for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
  196.     /* Load data into workspace, applying unsigned->signed conversion */
  197.     { register DCTELEM *workspaceptr;
  198.       register JSAMPROW elemptr;
  199.       register int elemr;
  200.  
  201.       workspaceptr = workspace;
  202.       for (elemr = 0; elemr < DCTSIZE; elemr++) {
  203.     elemptr = sample_data[elemr] + start_col;
  204. #if DCTSIZE == 8        /* unroll the inner loop */
  205.     *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  206.     *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  207.     *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  208.     *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  209.     *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  210.     *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  211.     *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  212.     *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  213. #else
  214.     { register int elemc;
  215.       for (elemc = DCTSIZE; elemc > 0; elemc--) {
  216.         *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
  217.       }
  218.     }
  219. #endif
  220.       }
  221.     }
  222.  
  223.     /* Perform the DCT */
  224.     (*do_dct) (workspace);
  225.  
  226.     /* Quantize/descale the coefficients, and store into coef_blocks[] */
  227.     { register DCTELEM temp, qval;
  228.       register int i;
  229.       register JCOEFPTR output_ptr = coef_blocks[bi];
  230.  
  231.       for (i = 0; i < DCTSIZE2; i++) {
  232.     qval = divisors[i];
  233.     temp = workspace[i];
  234.     /* Divide the coefficient value by qval, ensuring proper rounding.
  235.      * Since C does not specify the direction of rounding for negative
  236.      * quotients, we have to force the dividend positive for portability.
  237.      *
  238.      * In most files, at least half of the output values will be zero
  239.      * (at default quantization settings, more like three-quarters...)
  240.      * so we should ensure that this case is fast.  On many machines,
  241.      * a comparison is enough cheaper than a divide to make a special test
  242.      * a win.  Since both inputs will be nonnegative, we need only test
  243.      * for a < b to discover whether a/b is 0.
  244.      * If your machine's division is fast enough, define FAST_DIVIDE.
  245.      */
  246. #ifdef FAST_DIVIDE
  247. #define DIVIDE_BY(a,b)    a /= b
  248. #else
  249. #define DIVIDE_BY(a,b)    if (a >= b) a /= b; else a = 0
  250. #endif
  251.     if (temp < 0) {
  252.       temp = -temp;
  253.       temp += qval>>1;    /* for rounding */
  254.       DIVIDE_BY(temp, qval);
  255.       temp = -temp;
  256.     } else {
  257.       temp += qval>>1;    /* for rounding */
  258.       DIVIDE_BY(temp, qval);
  259.     }
  260.     output_ptr[i] = (JCOEF) temp;
  261.       }
  262.     }
  263.   }
  264. }
  265.  
  266.  
  267. #ifdef DCT_FLOAT_SUPPORTED
  268.  
  269. METHODDEF(void)
  270. forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
  271.            JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
  272.            JDIMENSION start_row, JDIMENSION start_col,
  273.            JDIMENSION num_blocks)
  274. /* This version is used for floating-point DCT implementations. */
  275. {
  276.   /* This routine is heavily used, so it's worth coding it tightly. */
  277.   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
  278.   float_DCT_method_ptr do_dct = fdct->do_float_dct;
  279.   FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
  280.   FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
  281.   JDIMENSION bi;
  282.  
  283.   sample_data += start_row;    /* fold in the vertical offset once */
  284.  
  285.   for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
  286.     /* Load data into workspace, applying unsigned->signed conversion */
  287.     { register FAST_FLOAT *workspaceptr;
  288.       register JSAMPROW elemptr;
  289.       register int elemr;
  290.  
  291.       workspaceptr = workspace;
  292.       for (elemr = 0; elemr < DCTSIZE; elemr++) {
  293.     elemptr = sample_data[elemr] + start_col;
  294. #if DCTSIZE == 8        /* unroll the inner loop */
  295.     *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  296.     *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  297.     *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  298.     *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  299.     *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  300.     *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  301.     *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  302.     *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  303. #else
  304.     { register int elemc;
  305.       for (elemc = DCTSIZE; elemc > 0; elemc--) {
  306.         *workspaceptr++ = (FAST_FLOAT)
  307.           (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
  308.       }
  309.     }
  310. #endif
  311.       }
  312.     }
  313.  
  314.     /* Perform the DCT */
  315.     (*do_dct) (workspace);
  316.  
  317.     /* Quantize/descale the coefficients, and store into coef_blocks[] */
  318.     { register FAST_FLOAT temp;
  319.       register int i;
  320.       register JCOEFPTR output_ptr = coef_blocks[bi];
  321.  
  322.       for (i = 0; i < DCTSIZE2; i++) {
  323.     /* Apply the quantization and scaling factor */
  324.     temp = workspace[i] * divisors[i];
  325.     /* Round to nearest integer.
  326.      * Since C does not specify the direction of rounding for negative
  327.      * quotients, we have to force the dividend positive for portability.
  328.      * The maximum coefficient size is +-16K (for 12-bit data), so this
  329.      * code should work for either 16-bit or 32-bit ints.
  330.      */
  331.     output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
  332.       }
  333.     }
  334.   }
  335. }
  336.  
  337. #endif /* DCT_FLOAT_SUPPORTED */
  338.  
  339.  
  340. /*
  341.  * Initialize FDCT manager.
  342.  */
  343.  
  344. GLOBAL(void)
  345. jinit_forward_dct (j_compress_ptr cinfo)
  346. {
  347.   my_fdct_ptr fdct;
  348.   int i;
  349.  
  350.   fdct = (my_fdct_ptr)
  351.     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  352.                 SIZEOF(my_fdct_controller));
  353.   cinfo->fdct = (struct jpeg_forward_dct *) fdct;
  354.   fdct->pub.start_pass = start_pass_fdctmgr;
  355.  
  356.   switch (cinfo->dct_method) {
  357. #ifdef DCT_ISLOW_SUPPORTED
  358.   case JDCT_ISLOW:
  359.     fdct->pub.forward_DCT = forward_DCT;
  360.     fdct->do_dct = jpeg_fdct_islow;
  361.     break;
  362. #endif
  363. #ifdef DCT_IFAST_SUPPORTED
  364.   case JDCT_IFAST:
  365.     fdct->pub.forward_DCT = forward_DCT;
  366.     fdct->do_dct = jpeg_fdct_ifast;
  367.     break;
  368. #endif
  369. #ifdef DCT_FLOAT_SUPPORTED
  370.   case JDCT_FLOAT:
  371.     fdct->pub.forward_DCT = forward_DCT_float;
  372.     fdct->do_float_dct = jpeg_fdct_float;
  373.     break;
  374. #endif
  375.   default:
  376.     ERREXIT(cinfo, JERR_NOT_COMPILED);
  377.     break;
  378.   }
  379.  
  380.   /* Mark divisor tables unallocated */
  381.   for (i = 0; i < NUM_QUANT_TBLS; i++) {
  382.     fdct->divisors[i] = NULL;
  383. #ifdef DCT_FLOAT_SUPPORTED
  384.     fdct->float_divisors[i] = NULL;
  385. #endif
  386.   }
  387. }
  388.